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Abstract. We analyse the exclusive channel pp̄→ γ π0, assuming handbag dominance. The soft parts are
parametrized in terms of CGLN amplitudes for the qq̄ → γπ0 transition and form factors for the pp̄→ qq̄
ones; the latter represent moments of Generalized Distribution Amplitudes. We present a combined fit to
Fermilab data from E760 taking simultaneously into account information from other exclusive reactions,
especially from pp̄ → γγ data. Overall a nicely consistent picture emerges, such that one can hope, that
our theoretical analysis will be reliable also for the kinematics of GSI/FAIR, which, hopefully, will provide
much more precise and complete data. Consequently, data from this facility should improve our knowledge
both on the proton-antiproton distribution amplitudes and the pion production mechanism.

PACS. 12.38.-t Quantum chromodynamics – 12.38.Bx Perturbative calculations

1 Introduction

The reliable theoretical treatment of hard exclusive pro-
cesses has been a challenge for QCD for many years. With
the advent of the generalized parton distribution formal-
ism [1], a large class of such processes, all involving some
hard scale Q2, can now be treated on a firm, perturbative
QCD basis, absorbing all non-perturbative soft physics
in suitable generalized parton distributions. This success
is made possible by the dominance of the handbag dia-
grams in leading twist, as demonstrated in the factoriza-
tion proofs.

There are other hard exclusive processes for which
these rigorous proofs do not apply. Still, however, there
are good arguments for the dominance of the handbag con-
tribution in certain regions of phase space also for many
of these reactions. Examples of such processes are two-
photon annihilations into pairs of hadrons for large but
not asymptotically large Mandelstam variables, s, −t, −u,
for applications see [2–4].

The FAIR project at GSI with the HESR antiproton
program [5] will offer ideal possibilities to study exclu-
sive channels in pp̄ annihilation, e.g. pp̄ → γγ, the time
reversed of the widely studied process γγ → pp̄ [6,7]. An-
other very interesting channel is pp̄ → π0γ because rates
will be much higher and the amplitude is related by cross-
ing to meson photoproduction pγ → π0p. The latter pro-
cess has been recently investigated within the handbag ap-
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proach in refs. [8,9]. It turned out that a leading-twist cal-
culation of the partonic subprocess, which is π0 photopro-
duction off quarks, is insufficent. In leading-twist accuracy,
i.e. considering only the one-gluon exchange mechanism
for the generation of the meson, the resulting γp → π0p
cross-section is far too small. This parallels observations
made in leading-twist calculations of the pion form fac-
tor [10]. The results are typically a factor 3 to 4 below
the admittedly poor data available at present. In fact the
lowest-order Feynman graphs contributing to γp → π0p
within the handbag approach are the same as those occur-
ing in the calculation of the pion form factor. Therefore,
one has to conclude that for the existing data one is still far
from the asymptotic region in which one-gluon exchange
dominates and it is necessary to use a more general mech-
anism for the generation of the meson. Many alternatives
and/or corrections to the leading-twist meson generation
have been discussed in the literature reaching from higher-
twist or power corrections to resummation of perturbative
corrections. Still the description of meson generation is a
matter of controversy. In order to remedy the situation,
a treatment of the subprocess is called for that does not
postulate the dominance of any specific meson generation
mechanism. Huang et al. [9] have proposed such a method.
They utilized the covariant decomposition of the γq →
π0q amplitudes proposed by Chew, Goldberger, Low and
Nambu (CGLN) [11]. This decomposition separates the
kinematic and helicity dependences of the subprocess from
the dynamics of the meson generation which is embodied
in the CGLN invariant functions. Exploiting properties
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of the invariant functions, various dynamical mechanisms
can be identified and consequences discussed. Comparison
with experimental data on the ratio of π+ and π− pho-
toproduction cross-sections [12] provides evidence for the
dominance of one invariant function out of the set of four.

In this work we are going to investigate the correspond-
ing time-like process pp̄→ γ π0. As for its space-like part-
ner we will again make use of the CGLN decomposition as,
at least for the fixed-target option of FAIR (s < 30 GeV2)
but possibly also for the collider option (s < 210 GeV2),
the one-gluon exchange mechanism for meson generation
will not dominate. Comparison with existing data from
Fermilab [13] at 8.5 GeV2 ≤ s ≤ 13.6 GeV2 allows for a
critical examination of the handbag charateristics. We will
show that, in parallel to the space-like region, there are in-
dications for the dominance of one of the invariant func-
tions. In fact, this function is the s↔ t crossed one of the
seemingly leading one in the space-like region. Morever,
this function is the one that is fed by the leading-twist
mechanism although not sufficiently strongly. Exploiting
the crossing properties of the CGLN invariant functions,
we are in the position to relate the space- and time-like
processes quantitatively. Let us note that for the comple-
mentary kinematic regime, namely the production of a
virtual photon and a pion into the forward direction, a
different factorization scheme was proposed by Pire and
Szymanowski [14].

2 The handbag amplitude for pp̄ → γ π
0

The treatment of proton-antiproton annihilation into pho-
ton and meson parallels that of annihilation into two pho-
tons, respectively its time-reversed process, two-photon
annihilation into pp̄, investigated in [3]. Therefore, we can
take over many of the results derived in that publication
and for clarity we will also use a notation as close as pos-
sible to that employed in [3].

Obviously our crucial starting point is the assumption
of handbag factorization of the amplitude for the kinemat-
ical region s,−t,−u À Λ2, where Λ is a typical hadronic
scale of the order of 1 GeV. In this factorization scheme
for which validity arguments have been given in ref. [3], the
process amplitudes appear as a product of a hard subpro-
cess, qaq̄ a → γ π0 and a soft pp̄→ qq̄ transition matrix ele-
ment which is parametrized by pp̄ generalized distribution
amplitudes Φai , i = A,P, V, S introduced in [3] and where
a is the flavour of the quark-antiquark pair emitted from
the pp̄-pair. The distribution amplitudes Φai are time-like
versions of generalized parton distributions for the proton.

We are interested in large-angle scattering processes.
For very high energies the handbag diagram will not dom-
inate, but rather processes like that in fig. 1a [15]. How-
ever, this is not a consequence of power counting, but
rather of Sudakov suppression, which can only be ex-
pected to be effective at really large energies. (A nearly
real parton entering or leaving a hard scattering process
emits gluon bremsstrahlung. Excluding this part of the
cross-section by requiring exclusivity, therefore, leads to
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Fig. 1. a) One of the leading-twist contributions at asymp-
totically large s. The two blobs on the left-hand side repre-
sent ordinary proton distribution amplitudes, while the one on
the right-hand side is the pion distribution amplitude. b) The
handbag contribution at large but non-asymptotic s. The blob
on the left-hand side represents the pp̄ distribution ampli-
tude, the one on the right-hand side the general dynamics for
qq̄ → γπ0 parametrized in terms of the CGLN invariant func-
tions. The momenta and helicities of the various particles are
indicated.

suppression.) See [16] for details. The asymptotic contri-
bution à la Brodsky and Lepage [15] to our process has not
yet been worked out. Experience with other processes like
γγ → pp̄ [17] or γp→ γp [18] lets us, however, expect that
this contribution to the cross-section is likely to lie way be-
low the experimental points for s of the order of 10 GeV2.

As we will follow closely the discussion of two-photon
annihilation into pp̄, presented in [3], we refrain from
presenting all the details of the theoretical analysis, and
rather restrict ourselves to a sketch of the main points.
We work in a symmetric frame where the momenta of the
proton and the antiproton are defined in light-cone coor-
dinates as

p =

√

s

8
[1, 1,

√
2β e⊥] , p′ =

√

s

8
[1, 1,−

√
2β e⊥] ,

(1)

where β =
√

1− 4m2/s and m is the mass of the pro-
ton. In the following we will work in the massless limit.
The transverse direction is characterized by the two-
dimensional vector e⊥ for which we choose (1, 0). The
important feature of a symmetric frame in the time-like
region is that the skewness is

ζ = p+/(p+ + p′+) = 1/2 . (2)

The momenta of the photon and the pion read

q =

√

s

8
[1 + sin θ, 1− sin θ,

√
2 cos θ e⊥] ,

q′ =

√

s

8
[1− sin θ, 1 + sin θ,−

√
2 cos θ e⊥] (3)
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in our frame of reference which is also a c.m. frame. The
scattering angle is denoted by θ and its trigonometric func-
tions are related to the Mandelstam variables by

sin θ =
2
√
tu

s
, cos θ =

t− u

s
. (4)

The starting point for the derivation of the handbag am-
plitude is the expression

M =
∑

a

e ea

∫

d4k

∫

d4x

(2π)4
e−ikx

×〈 0 |T Ψ̄aα(0)Ψaβ (x) | p(p) p̄(p′) 〉Ha
αβ , (5)

where we omitted helicity labels here for convenience.
The hard scattering kernel, describing the subprocess
qa(k) q̄a(k′)→ γ π0, is denoted by Ha. The sum runs over
the quark flavours a = u, d, s; ea is the corresponding
charge in units of the positron charge e. As discussed in de-
tail in [2,3,19], the pp̄→ qq̄ transition at large s can only
be soft if the outgoing quark and antiquark have small vir-
tualities and each carries approximatively the momentum
of the baryon or antibaryon; the deviations of the par-
ton momenta from the hadronic ones in size and direction
are of order Λ2/s. It can be further shown that the domi-
nant Dirac structure of the soft transition matrix element
in (5) involves the good components of the quark fields
in the parlance of light-cone quantization. The hard scat-
tering amplitudes can approximately be calculated with
on-shell parton momenta: Ha = ūaHava. This guarantees
gauge invariance. Within our calculational scheme we also
use the approximation that the proton (antiproton) dom-
inantly emits a valence quark (antiquark). Contributions
from the emission of fast sea quarks are expected to be
small.

Putting all this together we obtain, in full analogy to
the case of pp̄ → γγ [3], the handbag amplitude for the
process under consideration (for the sake of legibility ex-
plicit helicities are labelled by their signs),

Mµ0,νν′ =
∑

a

e

2
ea

{

[

Ha
µ 0,+− +Ha

µ 0,−+

]

δν−ν′ F a ∗
V (s)

+
[

Ha
µ 0,+− −Ha

µ 0,−+

] [

2ν δν−ν′ (F a ∗
A (s) + F a ∗

P (s))

−
√
s

2m
δνν′ F a ∗

P (s)
]

}

+O
(

Λ2

s

)

, (6)

where we make use of the definition of the annihilation
form factors in terms of the pp̄ distribution amplitudes Φai
as introduced in [3]. Let us note that in [4] such form fac-
tors were estimated in a somewhat schematic GPD model.
Comparison with experiment shows that this model un-
derestimates, e.g., FV . Here we fit the form factors directly
to experiment:

F a
i (s) =

∫ 1

0

dz Φai

(

z, ζ =
1

2
, s, µ2F

)

for i = V,A, P.

(7)
In ref. [3] the form factors are defined for the soft transi-
tions qaq̄ a → pp̄, while here we consider the time-reversed

transitions. Therefore, the complex conjugated form fac-
tors occur here. The fourth form factor or distribution am-
plitude, the scalar one, decouples in the symmetric frame
(ζ = 1

2 ), see [3]. Note that the relations (7) hold for any
physical value of the skewness. They also hold for any
value of the factorization scale, µ2F , of the distribution am-
plitudes, since the vector and axial vector currents have
zero anomalous dimensions.

Because the incoming proton-antiproton state has no
definite C-parity (p and p′ are different), one gets a
mixture of contributions with form factors of different
C-parity, see [3]. F a

A and F a
P is related to the C-even part

of the pp̄ state (coupling to the quark-antiquark pair) and
F a
V to the C-odd part.
To avoid any confusion let us expand a little on this

point. The intermediate quark state transforms under C
according to

C|q(k)q̄(k′)〉 = |q̄(k)q(k′)〉 = −|q(k′)q̄(k)〉 . (8)

Consequently, one can construct two states of definite
C-parity:

|C = −〉 = 1/
√

(2)[|q(k)q̄(k′)〉+ |q(k′)q̄(k)〉 ,
|C = +〉 = 1/

√

(2)[|q(k)q̄(k′)〉 − |q(k′)q̄(k)〉 . (9)

The γ-π0 final state couples to |C = −〉 only. However,
due to kinematics the contribution from |q(k′)q̄(k)〉 is ba-
sically zero (there is hardly any quark in the proton with a
momentum close to that of the antiproton and vice versa).
The remaining state |q(k)q̄(k′)〉 leads then to C-even and
C-odd odd contributions on the same footing.

We emphasize that quark-antiquark helicity non-flip
does not occur in (6) although there is baryon helicity
non-flip. Although we deal with massless quarks, quark
helicity non-flip could contribute since we have not spec-
ified the mechanism that controls the generation of the
meson. While the leading-twist, one-gluon exchange mech-
anism is pure helicity flip, twist-3 effects, for instance, pro-
duce non-flip contributions. Such contributions which are
accompanied by helicity non-flip generalized distribution
amplitudes and associated form factors [20], have been
studied for the corresponding space-like process in [9]. In
this respect pp̄ annihilation into γ π0 differs from annihi-
lation into two photons [3]. The subprocess for the latter
reaction is pure helicity flip for massless quarks. In par-
allel to pion photoproduction where quark helicity flip is
neglected [9], we assume that quark helicity non-flip con-
tributions are negligible in the time-like region. In prin-
ciple, this conjecture can be tested by measuring helicity
correlations. As we argued above, the dominant contribu-
tion to our process comes from the emission of valence
(anti)quarks by the (anti)proton. We therefore have to
take into account only the two subprocesses uū → γ π0

and dd̄→ γ π0. By isospin symmetry the weights of these
two subprocesses are Cuπ0 = 1/

√
2 and Cdπ0 = −1/

√
2,

see the discussion in [9]. It is therefore convenient to pull
out these weight factors from the subprocess amplitudes,
Ha = Caπ0 H, and absorb them as well as the correspond-
ing fractional charges into the form factors by introducing,
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following previous works [3,8,9,19], annihilation form fac-
tors specific to pp̄ annihilation into a photon and a π0

(i = V,A, P ),

R π0

i =
1√
2

(

eu F
u
i − ed F

d
i

)

. (10)

After this procedure the subprocess amplitudes are flavour
independent and we can drop the corresponding super-
script.

To proceed we make use of the CGLN covariant de-
composition of the subprocess amplitudes [11]:

Hµ0,λλ′ =
4
∑

i=1

Ci(s, t)ū(k, λ)Qi v(k
′, λ′) , (11)

with the manifestly (elm) gauge invariant covariants

Q1 = −2γ5
[

k̄ · ε∗ q · q′ − k̄ · q q′ · ε∗
]

,

Q2 = −2γ5
[

k̄ · q ε/∗ − k̄ · ε∗ q/
]

,

Q3 = − γ5

[

q · q′ ε/∗ − q′ · ε∗ q/
]

,

Q4 = − γ5 ε/
∗ q/ (12)

encoding the helicity structure of the subprocess. The vec-
tor ε denotes the polarisation of the photon and

k̄ =
1

2
(k − k′) . (13)

The invariant functions Cj depend on the detailed, un-
known dynamics. Using the spinor definitions given in
ref. [20], eq. (17), one can calculate the helicity amplitudes
in terms of these invariant functions. This reveals that C1

and C4 only contribute to the parton non-flip amplitudes
in the massless limit which, as just discussed, will be ne-
glected. The other two invariant functions contribute to
the helicity flip amplitudes,

H+0,+−(s, t) = −
√

s

2
u
[

C2 − C3

]

,

H+0,−+(s, t) =

√

s

2
t
[

C2 + C3

]

. (14)

The Mandelstam variables in the subprocess may differ
from the ones for the full process due to the proton mass,
see, for instance, [21]. Here, in this work we will ignore
such possible target mass corrections which are of order
m2/s. Inserting (10) and (14) into (6), we obtain the am-
plitudes

M+0,νν′ = +
e

2

√

s

2

{

[

+ (t− u)C2 − sC3

]

δν−ν′ R π0
∗

V

+
[

sC2 − (t− u)C3

] [

2ν δν−ν′ (R π0
∗

A +R π0
∗

P )

−
√
s

2m
δνν′ R π0

∗

P

]

}

, (15)

which lead to the pp̄→ γ π0 cross-section,

dσ

dt
(pp̄→ γ π0) =

αelm
32

s

×
{

|C2(s, t)|2
[(

t− u

s

)2

|R π0

V (s)|2 + (R π0

eff (s))
2

]

+|C3(s, t)|2
[

|R π0

V (s)|2 +
(

t− u

s

)2

(R π0

eff (s))
2

]

−2Re
[

C2(s, t)C
∗

3(s, t)
]

(

t− u

s

)

×
[

|R π0

V (s)|2 + (R π0

eff (s))
2

]}

, (16)

neglecting O(m2/s) terms. We note that the target mass
corrections, being of order Λ2/s, are not the only power
correction to the handbag amplitude (13). There are oth-
ers, as, for instance, deviations of the parton momenta
from the hadronic ones in size and directions which are
also of order Λ2/s (for a more detailed discussion we refer
to ref. [3]). At present there is no consistent method of cal-
culating these power corrections in a systematic way, an is-
sue that the handbag approach shares with many other in-
vestigations of hard exclusive and inclusive processes. For
consistency we therefore neglect target mass corrections
throughout this work, which also facilitates the compari-
son with results from refs. [3,4,8,9] where the same approx-
imation has been made. Judged from Compton scattering
[21] the size of the target mass corrections is probably less
than 20% for s<∼ 10 GeV2. Since a particular combination

of the form factors R π0

A and R π0

P always appears in the
cross-section, we introduce an effective form factor,

R π0

eff =
(

|R π0

A +R π0

P |2 +
s

4m2
|R π0

P |2
)1/2

. (17)

These form factors cannot be disentangled anyway, for
lack of suitable polarization data. Equations (15), (16) are
the s↔ t crossed versions of the handbag amplitudes and
the cross-section for γp → π0p derived in ref. [9]. There
are only some minor modifications for the form factors oc-
curing as a consequence of the specific frame of reference
used in the space- and time-like regions. These modifi-
cations which have extensively been discussed in ref. [3],
are: Instead of vector and tensor generalized distribution
amplitudes or form factors it is of advantage to apply the
Gordon decomposition to the vector piece in the time-like
region and trade the tensor form factor for the scalar one.
It then turns out that, in contrast to the space-like region,
the scalar form factor decouples in the symmetric frame
with ζ = 1/2 while the pseudoscalar one contributes.

As is obvious from eq. (6), the pseudoscalar annihi-

lation form factor Rπ0

P generates the pp̄ → qq̄ transitions
where proton and antiproton have the same helicities while
quark and antiquark have opposite ones. This implies par-
ton configurations of the pp̄ system with non-zero orbital
angular momentum. It is therefore expected that, at large
s, the pseudoscalar form factor is suppressed as compared
to the other form factors by at least 1/

√
s. If so, it will
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not dominate over the other terms in eqs. (16), (17) with
increasing s.

3 The annihilation form factors

As is obvious from eq. (15), an analyis of the process
pp̄ → γ π0 at large s,−t,−u, requires information on the
annihilation form factors (10) which encode the physics
of the soft pp̄→ qq̄ transition. Presently, the form factors
cannot be calculated from first principles in QCD. Also,
there is no model calculation available for them currently.
Thus, we have to determine the form factors phenomeno-
logically.

Exploiting the universality property of the generalized
distribution amplitudes, we can use the form factors that
have been determined from an analysis of two-photon an-
nihilations into pp̄ pairs within the handbag approach [3].
We however do not use the results of the numerical anal-
ysis presented in ref. [3] since we have now at our disposal
the very accurate BELLE data on the differential and in-
tegrated cross-sections for γγ → pp̄ [7]. These data allow a
determination of the vector and effective form factors from
a Rosenbluth-type separation. We therefore redo the anal-
ysis of the annihilation form factors. In the handbag ap-
proach [3] the γγ → pp̄ cross-section is given by an expres-
sion which is analogous to the |C2|-term in eq. (16) with
form factors defined analogously to eqs. (10) and (17):

dσ

dt
(γγ → pp̄) =

4πα2elm
s2

1

sin2 θ

{

|R γ
eff |2 + |R

γ
V |2 cos2 θ

}

.

(18)
A fit to the BELLE data on the differential cross-section at
the highest measured energy (3 <

√
s < 4 GeV , implying

an average s of s0 = 10.4 GeV2) and on the integrated
cross-sections for s ≥ 8 GeV2 provides1

s2R γ
eff = (2.90± 0.31) GeV4 (s/s0)

(−1.10±0.15)
,

|s2R γ
V | = (8.20± 0.77) GeV4 (s/s0)

(−1.10±0.15)
, (19)

where the same energy dependence is assumed for both
form factors. The fit to the differential cross-section is
compared to experiment in fig. 2. The quality of the fit
is, with the exception of the data point at cos θ = 0.55,
very good. The failure with this point may be regarded
as an indication that the handbag approach is here at its
limits. Indeed for s ' 10.4 GeV2 this scattering angle cor-
responds to t ' −2 GeV2 which is not much larger than
Λ2. For comparison we also show in fig. 2 the scattering
angle dependence of the cross-section in the case that Rγ

eff
equals Rγ

V (this curve is arbitrarily normalized). Evidently
the form factors are different.

1 The cross-section data in the region of ηc formation is re-
moved from the fit. Possible signals from the P -wave charmonia
are not visible in the BELLE data.
In this energy region the BELLE data for the differential cross-
section reveal a minimum at a scattering angle of 90◦. For lower
energies the cross-sections behave differently [7].

Fig. 2. The differential cross-section for γγ → pp̄ versus cos θ
at 3.0 ≤ √

s ≤ 4.0 GeV. Data taken from ref. [7]. The solid
line represents our fit, while the dashed one shows the angle
dependence assuming form factors, R γ

eff
= R γ

V , for comparison.

The BELLE data exhibit clear evidence for viola-
tions of the dimensional counting rules [22], the inte-
grated cross-section falls off faster than s−5 resulting in
an energy dependence of the annihilation form factors
as given in (19) instead of a constant behaviour. As we
mentioned above, due to Sudakov suppressions the anni-
hilation form factors are expected to decrease faster than
1/s2 for very large s. Recent BELLE measurements [23]
on γγ → π+π− and K+K− as well as the JLab measure-
ment [24] of Compton scattering also signal violations of
the dimensional counting rules for hard scales of the order
of 10 GeV2.

We note that the values for the form factors quoted
in (19) are somewhat different from the estimate given
in ref. [3]. This estimate was based on the the CLEO and
VENUS data [6] which are of markedly worse quality than
the BELLE data [7] and were only available at the rather
low value s = 7.3 GeV2.

Since we have only protons at our disposal an exact
flavour decomposition is not possible. We therefore follow
ref. [3] and simplify the expressions by taking a single real
constant ρ for the d/u ratio of all proton form factors,

F d
i = ρF u

i , i = V,A, P . (20)

This ansatz parallels the behaviour of fragmentation func-
tions for d→ p and u→ p transitions. In ref. [3] the range
of values

ρ = 0.25–0.75 (21)

has been considered. We remark that simple quark count-
ing arguments give ρ = 1/2 [25]. Combining (20) with the
flavour decomposition of the form factors for γγ → pp̄,

R γ
i = e2u F

u
i + e2d F

d
i , (22)

and neglecting non-valence quark contributions, one finds
for the form factors (10) of γπ0 production

R π0

i =
1

eu
√
2

1− ed/eu ρ

1 + (ed/eu)2 ρ
R γ
i , i = V,A, P . (23)
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Using the numerical values for the Rγ
i quoted in (19) and

adding the errors of the form factors and ρ quadratically,
we arrive at the estimate

|s2R π0

eff | = (3.42± 0.4) GeV4 (s/s0)
−1.10±0.15

,

|s2R π0

V | = (9.67± 1.1) GeV4 (s/s0)
−1.10±0.15

. (24)

As we said above, the effective form factor is likely dom-
inated by the axial vector form factor since the pseu-
doscalar one involves parton orbital angular momentum
and is, therefore, expected to be suppressed as compared
with the other form factors at large s. An experimental
separation of the axial vector and the pseudoscalar from
factors requires polarization experiments. The analysis of
such observables is beyond the scope of this work. We will
only briefly comment on this issue below. For the analysis
of cross-sections we only need the effective form factor.

Additional information on the vector form factor is
provided by the data on the magnetic proton form factor
G p
M in the time-like region for s up to 14.4 GeV2 [26]. This

form factor is related to the vector form factors (7) by2

G p
M (s) =

∑

a=u,d

ea F
a
V (s) . (25)

The E835 data on the scaled magnetic form factor s2|G p
M |

can also be represented by a power law,

|s2G p
M | = (2.46± 0.16) GeV4 (s/s0)

(−0.75±0.34)
. (26)

An estimate of R π0

V from G p
M along the same lines as

described above, leads to a value smaller than given in
(24) [3]. Given the approximations made in the derivation
of the handbag contribution [3], there is however no real
contradiction.

4 Analysis of the Fermilab (E760) data

Let us turn now to the discussion of the CGLN invari-
ant functions. They have definite behaviour under t ↔ u
crossing [11]:

C2(s, t) = C2(s, u) , C3(s, t) = −C3(s, u) . (27)

The invariant functions have dynamical singularities. This
can be seen from their leading-twist contributions which
are expected to dominate at large s. In this kinematical
region the subprocess qq̄ → γπ0 is dominated by one-gluon
exchange to be calculated in collinear approximation to
lowest order of perturbative QCD. One obtains

C
coll

2 (s, t) =
ā coll2

tu
, C

coll

3 (s, t) = 0 , (28)

where

ā coll2 = 4παs(µ
2
R)fπ

CF
Nc
〈1/τ〉π . (29)

Here, µ2R is an appropriate renormalization scale, fπ the
pion decay constant, CF = (N2

c − 1)/(2Nc) is the usual

2 Note that only the form factors (7) are universal in contrast
to the flavour combinations occuring in specific processes.

SU(Nc = 3) color factor and the last factor in (29) is
the 1/τ moment of the pion distribution amplitude. To
leading-twist accuracy also C1 and C4 are zero. These in-
variant functions control the situation where quark and
antiquark have the same helicity. They are only non-zero
at twist-3 (or higher) level. As we mentioned in the intro-
duction, the leading-twist, lowest-order pQCD contribu-
tion to the subprocess falls short as compared to exper-
iment. It is therefore suggestive to assume that handbag
factorization holds and that a more general mechanism
than leading-twist, unknown at present, is at work for the
generation of the meson and enhances the invariant func-
tion C2 sufficiently.

In view of this, let us try now to find a suitable
parametrization of the invariant functions. Their singular-
ity structure will not be altered by the inclusion of more
complicated dynamical effects such as higher orders of
perturbative QCD, transverse degrees of freedom and/or
higher twists or power corrections. For instance, by the in-
sertion of an infinite number of fermionic loops in the hard
gluon propagator and by interpreting the ambiguities in
the resummation of these loop effects —known as infrared
renormalons— as a model of higher-twist contributions,
an enhancement of the leading twist by a large factor may
be obtained [27]. Therefore, a general ansatz for C2 reads

C2(s, t) =
ā2
tu

f2(t, u) , (30)

where f2 is a symmetric function of t and u. It may com-
prise powers of tu/s2, i.e. powers of sin θ, or symmetric
combinations of ln t and lnu.

From the leading-twist result (28) one may expect that
the invariant function C3 plays only a minor role at s of
the order of 10 GeV2 and may be neglected. This asser-
tion is further supported by an observation made for π±

photoproduction [9]: the experimental ratio of these two
processes is, within the handbag approach, only under-
stood if |C2| À |C3| provided quark helicity flip can be
neglected. Here, the Ci are the s ↔ t crossed invariant
functions Ci. With regard to this observation we will first
discuss a scenario with a dominant C2 assuming for it the
ansatz (30) with the simplest choice f2 ≡ 1. Taking the
estimate (24) for the annihilation form factors we are left
with only one free parameter, namely the normalization
constant ā2. In general, ā2 is a complex number but the
cross-section only probes its modulus. The energy and an-
gle dependence of the pp̄ → γπ0 cross-section is fixed by
the handbag physics.

The differential and integrated cross-section read for
this scenario (θ is the angle between incoming proton and
the outgoing photon in the center-of-momentum frame.)

dσ

d cos θ
=

αelm
4s6

|ā2|2
sin4 θ

[

|s2Rπ0

eff |2 + cos2 θ |s2Rπ0

V |2
]

,

σ =
αelm
4

|ā2|2
s6

[

1

2
ln

1 + z0
1− z0

(

|s2Rπ0

eff |2 − |s2Rπ0

V |2
)

+
z0

1− z20

(

|s2Rπ0

eff |2 + |s2Rπ0

V |2
)

]

, (31)
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Fig. 3. The integrated cross-section for pp̄ → γ π0 versus s.
Filled (open) circles: cross-sections integrated over the range
| cos θ| = 0 to z0, z0 = 0.5 (0.6). Data taken from [13]. The
black lines represent the prediction from the handbag approach
with the error bands evaluated from the uncertainties of the
annihilation from factors. The dashed line represents a power
law fit for z0 = 0.6 with σ ∼ (s/s0)

8.16±0.12.

where z0 = | cos θ0| is the limit of integration. With z0 =
0.5 the integrated cross-section is

σ = 864 nb GeV2 |ā2|2
s6

[

|s2Rπ0

eff |2 + 0.096|s2Rπ0

V |2
]

.

(32)
A fit to the E760 cross-section data provides the value
(13.39±0.10) GeV for the parameter |ā2|. The fit is com-
pared to the data [13] in fig. 3. With regard to the errors
of the annihilation from factors quoted in (24), very good
agreement of theory and experiment can be claimed. The
contribution from J/Ψ formation is very small and can be
ignored. We also neglect a possible contribution from the
Ψ ′. Its decay into γπ0 has not yet been observed.

For a few energies one may also integrate the E760 data
up to z0 = 0.6. For comparison and in order to demon-
strate the internal consistency of our numerical analysis,
we fit a power law to these data. As can be seen from fig. 3,
the fit is in good agreement with the data and yields the
value of 8.16 ± 0.12 for the power in perfect agreement
with the handbag approach and the form factors (24) es-
timated from γγ → pp̄. We note in passing that a power
of 6 is expected from the dimensional counting rules for
our process.

The results from the handbag approach for the dif-
ferential cross-sections are shown for two energies and
for | cos θ| ≤ 0.6 in fig. 4. The excellent agreement be-
tween the theoretical results and the E760 data is obvious.
Similarly good results are obtained for all energies above
10 GeV2, while for lower energies the cross-section data
exhibit marked fluctuations which might be indicative of
prominent low orbital angular-momentum partial waves.
This behaviour of the pp̄ → γπ0 cross-section parallels
that observed in pp̄ → γγ [6,7] and is the reason why
we determined the vector form factor only from BELLE
data [7] for the cross-section at s = 10.4 GeV2. In order

Fig. 4. The differential cross-section for pp̄→ γ π0 versus cos θ
at s = 12.44 GeV2 (top) and 13.59 GeV2 (bottom). Data
taken from [13]. The solid lines with the error bands represent
the prediction from the handbag approach. For comparison re-
sults are also shown where the cross-section behaves ∝ 1/ sin2 θ
instead of ∝ 1/ sin4 θ (dashed line).

Fig. 5. The differential cross-section for pp̄ → γ π0 at 90◦

versus s. Data, representing the average of the cross-sections
in the two bins adjacent to 90◦, are taken from [13]. The solid
lines with the error bands represent the prediction from the
handbag approach.

to further elucidate the structure of the handbag contri-
bution we display the pp̄ → γπ0 cross-section at a scat-
tering angle of 90◦ in fig. 5. Also here we observe fair
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agreement between the handbag approach and the data
although the errors are substantial.

In fig. 4 we display for comparison also the results of
a calculation assuming f2 = sin θ (for simplicity we re-
tain the value of the parameter ā2). In this case the angle
dependence of the cross-section coincides with that for
pp̄→ γγ but it seems to be too weak for the γπ0 channel,
in contrast to the two-photon channel where it is in very
good agreement with the BELLE data for | cos θ| ≤ 0.5.
Thus, one may conclude that, within errors, there is no
need for f2 6= 1. In other words, an ansatz for the invari-
ant function C2 that resembles the singularity structure
of the leading-twist result but with a strength adjusted to
experiment, describes the data very well.

From fig. 5 it is also obvious that a scenario |C3| À
|C2| is in conflict with experiment. The zero of the t↔ u
antisymmetric invariant function C3 at 90◦ would lead to
a corresponding zero in the differential cross-section which
is not seen with the exception of a few energies where a
zero is possible within errors3. It goes without saying that
a small admixture of C3 to a dominant C2 cannot be ruled
out. There is yet another test of the internal consistency
of the handbag approach. Our process is related to pho-
toproduction of pions by s ↔ t crossing as we mentioned
occasionally. The form factors are functions of t in the lat-
ter case and are known from a recent analysis of nucleon
form factors exploiting the sum rules satisfied by general-
ized parton distributions [16]. Using the invariant function
related by s↔ t crossing to C̄2,

C2(s, t) =
a2
su

, (33)

where the Mandelstam variables are now those for photo-
production, one finds fair agreement with the high-energy
wide-angle SLAC data [28] if the parameter a2 is adjusted
to these data (a2 = 20.3 GeV). For very large s the param-
eter a2 should coincide with |ā2| = 13.39± 0.10 GeV but
at the actual s values of order 10 GeV2 this discrepancy
is not implausible. Typical differences between time- and
space-like values of many quantities are of this size [29]. It
is, however, important to realize that the photoprodcution
data [28] need confirmation.

5 Predictions for FAIR/GSI

Obviously figs. 3 and 5 provide already predictions for
the cross-sections to be expected at FAIR. In fig. 6 our
prediction for the differential cross-section at s = 20 GeV2

is shown (the fixed-angle cross-section scales as s8.2±0.3 in
our approach). As the discussed luminosities reach up to
2·104 nb−1/d for unpolarized reactions and 103 nb−1/d for

3 Explicit fits of the C3 scenario to the differential cross-
section data, using for instance the ansatz C3 = ā3 cos θ/(tu),
provide results which are too small in the vicinity of 90◦ as
a consequence of this zero. On the other hand, the fit to the
integrated cross-section is of the same quality as in the C2

scenario (with |ā3| = 20.05± 0.15 GeV).

Fig. 6. Cross-section prediction for the FAIR fixed-target en-
ergy s = 20 GeV2.

polarized ones, the data situation will improve drastically,
ones FAIR is operational [5].

The fact that the protons and antiprotons will be po-
larized adds very attractive additional possibilities. It al-

lows, e.g, to separate Rπ0

A and Rπ0

P . In analogy to the
two-photon channel [3], the helicity correlation ALL be-
tween proton and antiproton is given by

ALL =
dσ(++)− dσ(+−)
dσ(++) + dσ(+−)

= −|R
π0

A +Rπ0

P |2 + cos2 θ|Rπ0

V |2− s
4m2 |Rπ0

P |2
|Rπ0

A +Rπ0

P |2 + cos2 θ|Rπ0

V |2+ s
4m2 |Rπ0

P |2
, (34)

where dσ(νν ′) is the cross-section for polarized proton-
antiproton annihilation.

Our analysis can be easily generalized to other pseu-
doscalar mesons, e.g. to the γ η (η′) channel. The only
complication arises from the additional ss̄ and two-gluon
Fock component the η and η′ mesons possess. For par-
tons which are emitted nearly collinearly by the proton
and antiproton, each carrying a large fraction of its par-
ent’s momentum, the strange quarks are likely strongly
suppressed. Not much is known about the two-gluon com-
ponent. There is only some, not very precise information
on its leading-twist distribution amplitude from a next-
to-leading–order analysis of the γ → η, η′ transition form
factors and the inclusive Υ → η′X decay [30]. These anal-
yses tell us that to leading-twist accuracy the contribu-
tion from the two-gluon Fock component to η′ produc-
tion may be sizeable while it is strongly suppressed in the
case of the η. Beyond the leading-twist level the role of
the two-gluon contribution is unknown in the case of the
η′. Since the η-meson is dominantly a flavour octet state,
however, its two-gluon component should be suppressed
in any case. In view of this, one can treat the η-meson in
the quark-flavour basis and, neglecting the strange com-
ponent, regard it as cosφ ηq, where φ is the usual mixing
angle in the quark-flavour basis and ηq is the quark part
of the η wave function. The annihilation form factors for
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the production of the isoscalar ηq read

R
ηq

i =
1√
2

(

eu F
u
i + ed F

d
i

)

. (35)

Their numerical values are somewhat smaller than those
for the π0 given in (24). Up to this difference and a new
value of the parameter ā2, the handbag approach then
predicts the same energy and angle dependence of the
cross-sections for the γη channel as for the γπ0 one. Pro-
vided the two-gluon component also plays only a minor
role in the case of the η′, the ratio of the γη and γη′

cross-sections is given by

dσ(pp̄→ γη)

dσ(pp̄→ γη′)
= cotφ . (36)

In [31] the η-η′ mixing angle has been determined to be
39.3◦.

Our results for the γπ0 channel can also be straight-
forwardly generalized to the γVL channel, where VL is a
longitudinally polarized vector meson, if we rely again on
valence quark dominance. The annihilation form factors
for ρ0 and ω production are the same as given in (24)
and (35), respectively. In contrast, φ-meson production is
expected to be strongly suppressed because of the mis-
match of the proton and φ-meson valence quarks. The
cross-section for the γVL channel reads

dσVL

d cos θ
=
αelm
4s6

|āVL

2 |2
sin4 θ

[

|s2RVL

V |2+cos2 θ |s2RVL

eff |2
]

. (37)

The dependences on the vector and the effective form fac-
tors are reversed in this case as a consequence of parity
invariance (see, for instance, ref. [8]). We therefore expect
a somewhat flatter angular dependence, close to 1/ sin4 θ,
for the vector meson channels than for γπ0. The isolation
of longitudinally polarized ρ0-mesons might be possible
with the planned PANDA detector [5].

The generalization to transversally polarized vector
mesons, VT , is more intricate. One has to consider the
subprocesses qq̄ → γVT with equal and opposite quark
and antiquark helicities. In the first case one has to in-
troduce new pp̄ distribution amplitudes and, hence, a new
set of associated annihilation from factors. These new dis-
tribution amplitudes are time-like versions of the helicity
flip GPDs introduced in ref. [32]. For opposite quark and
antiquark helicities, on the other hand, the formation of
the transversally polarized vector meson requires a differ-
ent mechanism than for longitudinally ones. It is beyond
the scope of this work to analyse the processes pp̄→ γVT .

6 Summary

We have analysed the reaction pp̄→ γπ0 for large scatter-
ing angles assuming handbag dominance. We obtained a
rather satisfying description of the existing Fermilab data
from E760. Far more precise data can be expected from
FAIR/GSI which also provides the possibility to use po-
larization variables to separate the different contributions.

Such experiments would contribute to the determination
of the generalized distribution amplitudes of the nucleon.
It would also allow to clarify the nature of the dominant
reaction mechanisms as a function of c.m. energy s. We
argue that a similar analysis can be performed without
major problems for annihilation in a photon plus either an-
other pseudoscalar meson or a longitudinal vector meson.
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